9 research outputs found

    Implement DNN technology by using wireless sensor network system based on IOT applications

    Get PDF
    The smart Internet of Things-based system suggested in this research intends to increase network and application accuracy by controlling and monitoring the network. This is a deep learning network. The invisible layer's structure permits it to learn more. Improved quality of service supplied by each sensor node thanks to element-modified deep learning and network buffer capacity management. A customized deep learning technique can be used to train a system that can focus better on tasks. The researchers were able to implement wireless sensor calculations with 98.68 percent precision and the fastest execution time. With a sensor-based system and a short execution time, this article detects and classifies the proxy with 99.21 percent accuracy. However, we were able to accurately detect and classify intrusions and real-time proxy types in this study, which is a significant improvement over previous research

    Classification of EEG Signal by Using Optimized Quantum Neural Network

    Get PDF
    In recent years the algorithms of machine learning was used for brain signals identifing which is a useful technique for diagnosing diseases like Alzheimer's and epilepsy. In this paper, the Electroencephalogram (EEG) signals are classified using an optimized Quantum neural network (QNN) after normalizing these signals, wavelet transform (WT) and the independent component analysis (ICA), were utilized for feature extraction.  These algorithms used to reduces the dimensions of the data, which is an input to the optimized QNN for the purpose of performing the classification process after the feature extraction process. This research uses an optimized QNN, a form of feedforward neural network (FFNN), to recognize (EEG) signals. The Particle swarm optimization (PSO) algorithm was used to optimize the quantum neural network, which improved the training process of the system's performance. The optimized (QNN) provided us with somewhat faster and more realistic results. According to simulation results, the total classification for (ICA) is 82.4 percent, while the total classification for (WT) is 78.43 percent; from these results, using the ICA for feature extraction is better than using WT

    A stand-alone hydrogen photovoltaic fuel cell hybrid system for efficient renewable energy generation

    Get PDF
    Today the main concern for World is energy and power age. By and by, out of around 7 billion populaces, just 65-69% approaches power. Essentially to carry the populaces into the office of power access however much as could be expected inside the restricted assets, we have used the regular assets like sun oriented and wind to satisfy this assumption. Utilizing sun based and wind energy in relationship with the power gadgets, we can supply the power to the buyers inside their capacity and we will want to limit the power issue as could really be expected. Hydrogen Photovoltaic Fuel (HPF) cell is the mix of force gadgets which lessens the major sun oriented emergency of expenses, where expenses are the enormous issue for non-industrial nations. Presently a-days, the coordinated circuits (IC) are entirely solid and modest, to the point that make the conveying and reversing or changing over components simplest than the massive and expensive instruments utilized in the traditional power supply framework. The examination expects that the lattice joining of the environmentally friendly power assets utilizing HPF inverter might cause a colossal comment in satisfying the absence of force use across the world. Solar energy is a rapidly growing resource, already providing 4.5% of electricity in the World and projected to supply up to 35% by 2050. On the other hand, the default model’s predictions were far from the actual metered HPF data. For renewability, the simulated renewable energy consumption with modified inputs is 3.9% below of actual metered renewable data while the default model’s prediction was more than 52% below actual renewable use. Using PV-HPF hybrid model indices to represent how well a simulated model describes the variability in the measured data; the modified model has achieved accurate renewability results; with a Solar of 10.99 % and Wind of 9.90%, while the hybrid model has a solar of 57.16% and a Wind of 57.20% in renewable energy comparison being performed in MATLAB

    Electrocardiograph signal recognition using wavelet transform based on optimized neural network

    Get PDF
    Due to the growing number of cardiac patients, an automatic detection that detects various heart abnormalities has been developed to relieve and share physicians’ workload. Many of the depolarization of ventricles complex waves (QRS) detection algorithms with multiple properties have recently been presented; nevertheless, real-time implementations in low-cost systems remain a challenge due to limited hardware resources. The proposed algorithm finds a solution for the delay in processing by minimizing the input vector’s dimension and, as a result, the classifier’s complexity. In this paper, the wavelet transform is employed for feature extraction. The optimized neural network is used for classification with 8-classes for the electrocardiogram (ECG) signal this data is taken from two ECG signals (ST-T and MIT-BIH database). The wavelet transform coefficients are used for the artificial neural network’s training process and optimized by using the invasive weed optimization (IWO) algorithm. The suggested system has a sensitivity of over 70%, a specificity of over 94%, a positive predictive of over 65%, a negative predictive of more than 93%, and a classification accuracy of more than 80%. The performance of the classifier improves when the number of neurons in the hidden layer is increased

    Detection of hand gestures with human computer recognition by using support vector machine

    Get PDF
    Many applications, such as interactive data analysis and sign detection, can benefit from hand gesture recognition. We offer a low-cost approach based on human-computer interaction for predicting hand movements in real time. Our technique involves using a color glove to train a random forest classifier and then predicting a naked hand at the pixel level. Our algorithm anticipates all pixels at a rate of around 3 frames per second and is unaffected by differences in the surroundings. It's also been proven that HCI-based data augmentation is more effective than any other way for enhancing interactive data. In addition, the augmentation experiment was carried out on multiple subsets of the original hand skeleton sequence dataset, each with a different number of classes, as well as on the entire dataset. On practically all subsets, the proposed base architecture improved classification accuracy. When the entire dataset was used, there was even a modest improvement. Correct identification could be regarded as a quality indicator. The best accuracy score was 94.02 percent for the HCI-model with support vector machine (SVM) classifier

    Evaluation of wind-solar hybrid power generation system based on Monte Carlo method

    Get PDF
    The application of wind-photovoltaic complementary power generation systems is becoming more and more widespread, but its intermittent and fluctuating characteristics may have a certain impact on the system's reliability. To better evaluate the reliability of stand-alone power generation systems with wind and photovoltaic generators, a reliability assessment model for stand-alone power generation systems with wind and photovoltaic generators was developed based on the analysis of the impact of wind and photovoltaic generator outages and derating on reliability. A sequential Monte Carlo method was used to evaluate the impact of the wind turbine, photovoltaic (PV) turbine, wind/photovoltaic complementary system, the randomness of wind turbine/photovoltaic outage status and penetration rate on the reliability of Independent photovoltaic power generation system (IPPS) under the reliability test system (RBTS). The results show that this reliability assessment method can provide some reference for planning the actual IPP system with wind and complementary solar systems

    A secure sharing control framework supporting elastic mobile cloud computingA secure sharing control framework supporting elastic mobile cloud computing

    No full text
    Inelastic mobile cloud computing (EMCC), mobile devices migrate some computing tasks to the cloud for execution according to current needs and seamlessly and transparently use cloud resources to enhance their functions. First, based on the summary of existing EMCC schemes, a generic EMCC framework is abstracted; it is pointed out that the migration of sensitive modules in the EMCC program can bring security risks such as privacy leakage and information flow hijacking to EMCC; then, a generic framework of elastic mobile cloud computing that incorporates risk management is designed, which regards security risks as a cost of EMCC and ensures that the use of EMCC is. Finally, it is pointed out that the difficulty of risk management lies in risk quantification and sensitive module labeling. In this regard, risk quantification algorithms are designed, an automatic annotation tool for sensitive modules of Android programs is implemented, and the accuracy of the automatic annotation is demonstrated through experiments

    Efficient time-series forecasting of nuclear reactions using swarm intelligence algorithms

    Get PDF
    In this research paper, we focused on the developing a secure and efficient time-series forecasting of nuclear reactions using swarm intelligence (SI) algorithm. Nuclear radioactive management and efficient time series for casting of nuclear reactions is a problem to be addressed if nuclear power is to deliver a major part of our energy consumption. This problem explains how SI processing techniques can be used to automate accurate nuclear reaction forecasting. The goal of the study was to use swarm analysis to understand patterns and reactions in the dataset while forecasting nuclear reactions using swarm intelligence. The results obtained by training the SI algorithm for longer periods of time for predicting the efficient time series events of nuclear reactions with 94.58 percent accuracy, which is higher than the deep convolution neural networks (DCNNs) 93% accuracy for all predictions, such as the number of active reactions, to see how the results can improve. Our earliest research focused on determining the best settings and preprocessing for working with a certain nuclear reaction, such as fusion and fusion task: forecasting the time series as the reactions took 0-500 ticks being trained on 300 epoch

    Bearing Fault Diagnosis Using Lightweight and Robust One-Dimensional Convolution Neural Network in the Frequency Domain

    No full text
    The massive environmental noise interference and insufficient effective sample degradation data of the intelligent fault diagnosis performance methods pose an extremely concerning issue. Realising the challenge of developing a facile and straightforward model that resolves these problems, this study proposed the One-Dimensional Convolutional Neural Network (1D-CNN) based on frequency-domain signal processing. The Fast Fourier Transform (FFT) analysis is initially utilised to transform the signals from the time domain to the frequency domain; the data was represented using a phasor notation, which separates magnitude and phase and then fed to the 1D-CNN. Subsequently, the model is trained with White Gaussian Noise (WGN) to improve its robustness and resilience to noise. Based on the findings, the proposed model successfully achieved 100% classification accuracy from clean signals and simultaneously achieved considerable robustness to noise and exceptional domain adaptation ability. The diagnosis accuracy retained up to 97.37%, which was higher than the accuracy of the CNN without training under noisy conditions at only 43.75%. Furthermore, the model achieved an accuracy of up to 98.1% under different working conditions, which was superior to other reported models. In addition, the proposed model outperformed the state-of-art methods as the Signal-to-Noise Ratio (SNR) was lowered to −10 dB achieving 97.37% accuracy. In short, the proposed 1D-CNN model is a promising effective rolling bearing fault diagnosis
    corecore